Ring Theory
   HOME

TheInfoList



OR:

In
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
, ring theory is the study of
rings Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s. Ring theory studies the structure of rings, their
representations ''Representations'' is an interdisciplinary journal in the humanities published quarterly by the University of California Press. The journal was established in 1983 and is the founding publication of the New Historicism movement of the 1980s. It ...
, or, in different language,
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
, special classes of rings (
group ring In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the give ...
s,
division ring In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element us ...
s,
universal enveloping algebra In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representati ...
s), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
Commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
s are much better understood than noncommutative ones.
Algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
and
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent ...
'', a major area of modern mathematics. Because these three fields (algebraic geometry, algebraic number theory and commutative algebra) are so intimately connected it is usually difficult and meaningless to decide which field a particular result belongs to. For example,
Hilbert's Nullstellensatz In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros," or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic ...
is a theorem which is fundamental for algebraic geometry, and is stated and proved in terms of commutative algebra. Similarly,
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been k ...
is stated in terms of elementary
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
, which is a part of commutative algebra, but its proof involves deep results of both algebraic number theory and algebraic geometry.
Noncommutative ring In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not a ...
s are quite different in flavour, since more unusual behavior can arise. While the theory has developed in its own right, a fairly recent trend has sought to parallel the commutative development by building the theory of certain classes of noncommutative rings in a geometric fashion as if they were rings of
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
s on (non-existent) 'noncommutative spaces'. This trend started in the 1980s with the development of
noncommutative geometry Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions (possibly in some ge ...
and with the discovery of
quantum group In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras) ...
s. It has led to a better understanding of noncommutative rings, especially noncommutative
Noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noether ...
s. For the definitions of a ring and basic concepts and their properties, see ''
Ring (mathematics) In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying proper ...
''. The definitions of terms used throughout ring theory may be found in ''
Glossary of ring theory Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject. For the items in commutative algebra (the theory ...
''.


Commutative rings

A ring is called ''commutative'' if its multiplication is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
. Commutative rings resemble familiar number systems, and various definitions for commutative rings are designed to formalize properties of the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s. Commutative rings are also important in
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
. In commutative ring theory, numbers are often replaced by ideals, and the definition of the
prime ideal In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with ...
tries to capture the essence of
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s.
Integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural set ...
s, non-trivial commutative rings where no two non-zero elements multiply to give zero, generalize another property of the integers and serve as the proper realm to study divisibility.
Principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, ...
s are integral domains in which every ideal can be generated by a single element, another property shared by the integers.
Euclidean domain In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. ...
s are integral domains in which the
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an effi ...
can be carried out. Important examples of commutative rings can be constructed as rings of
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
s and their factor rings. Summary:
Euclidean domain In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. ...
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, ...
unique factorization domain In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an ...
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural set ...
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
.


Algebraic geometry

Algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
is in many ways the mirror image of commutative algebra. This correspondence started with
Hilbert's Nullstellensatz In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros," or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic ...
that establishes a one-to-one correspondence between the points of an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Mo ...
, and the
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals cont ...
s of its
coordinate ring In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime idea ...
. This correspondence has been enlarged and systematized for translating (and proving) most geometrical properties of algebraic varieties into algebraic properties of associated commutative rings. Alexander Grothendieck completed this by introducing
scheme A scheme is a systematic plan for the implementation of a certain idea. Scheme or schemer may refer to: Arts and entertainment * ''The Scheme'' (TV series), a BBC Scotland documentary series * The Scheme (band), an English pop band * ''The Schem ...
s, a generalization of algebraic varieties, which may be built from any commutative ring. More precisely, the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors i ...
of a commutative ring is the space of its prime ideals equipped with
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is n ...
, and augmented with a
sheaf Sheaf may refer to: * Sheaf (agriculture), a bundle of harvested cereal stems * Sheaf (mathematics), a mathematical tool * Sheaf toss, a Scottish sport * River Sheaf, a tributary of River Don in England * ''The Sheaf'', a student-run newspaper se ...
of rings. These objects are the "affine schemes" (generalization of
affine varieties In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ideal. ...
), and a general scheme is then obtained by "gluing together" (by purely algebraic methods) several such affine schemes, in analogy to the way of constructing a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
by gluing together the
charts A chart (sometimes known as a graph) is a graphical representation for data visualization, in which "the data is represented by symbols, such as bars in a bar chart, lines in a line chart, or slices in a pie chart". A chart can represent tabul ...
of an
atlas An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geographic ...
.


Noncommutative rings

Noncommutative rings resemble rings of
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
in many respects. Following the model of
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, attempts have been made recently at defining
noncommutative geometry Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions (possibly in some ge ...
based on noncommutative rings. Noncommutative rings and
associative algebra In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplic ...
s (rings that are also
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s) are often studied via their
categories Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally *Category of being *Categories (Aristotle), ''Categories'' (Aristotle) *Category (Kant) ...
of modules. A
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Mo ...
over a ring is an abelian
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
that the ring acts on as a ring of
endomorphism In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a g ...
s, very much akin to the way
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
s (integral domains in which every non-zero element is invertible) act on vector spaces. Examples of noncommutative rings are given by rings of square
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
or more generally by rings of endomorphisms of abelian groups or modules, and by
monoid ring In abstract algebra, a monoid ring is a ring constructed from a ring and a monoid, just as a group ring is constructed from a ring and a group. Definition Let ''R'' be a ring and let ''G'' be a monoid. The monoid ring or monoid algebra of ''G'' ...
s.


Representation theory

Representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
is a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
that draws heavily on non-commutative rings. It studies abstract algebraic structures by ''representing'' their elements as
linear transformation In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
s of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s, and studies
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a sy ...
over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
and the
algebraic operation Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings. Algebraic may also refer to: * Algebraic data type, a data ...
s in terms of
matrix addition In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. However, there are other operations which could also be considered addition for matrices, such as the direct sum and the Kroneck ...
and
matrix multiplication In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the s ...
, which is non-commutative. The
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
ic objects amenable to such a description include
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
,
associative algebra In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplic ...
s and
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
s. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication.


Some relevant theorems

General * Isomorphism theorems for rings * Nakayama's lemma Structure theorems *The Artin–Wedderburn theorem determines the structure of
semisimple ring In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itsel ...
s *The
Jacobson density theorem In mathematics, more specifically non-commutative ring theory, modern algebra, and module theory, the Jacobson density theorem is a theorem concerning simple modules over a ring . The theorem can be applied to show that any primitive ring can be vi ...
determines the structure of
primitive ring In the branch of abstract algebra known as ring theory, a left primitive ring is a ring which has a faithful simple left module. Well known examples include endomorphism rings of vector spaces and Weyl algebras over fields of characteristic zero. ...
s *
Goldie's theorem In mathematics, Goldie's theorem is a basic structural result in ring theory, proved by Alfred Goldie during the 1950s. What is now termed a right Goldie ring is a ring ''R'' that has finite uniform dimension (="finite rank") as a right module over ...
determines the structure of
semiprime In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime nu ...
Goldie ring In mathematics, Goldie's theorem is a basic structural result in ring theory, proved by Alfred Goldie during the 1950s. What is now termed a right Goldie ring is a ring ''R'' that has finite uniform dimension (="finite rank") as a right module o ...
s *The Zariski–Samuel theorem determines the structure of a commutative
principal ideal ring In mathematics, a principal right (left) ideal ring is a ring ''R'' in which every right (left) ideal is of the form ''xR'' (''Rx'') for some element ''x'' of ''R''. (The right and left ideals of this form, generated by one element, are called prin ...
*The
Hopkins–Levitzki theorem In the branch of abstract algebra called ring theory, the Akizuki–Hopkins–Levitzki theorem connects the descending chain condition and ascending chain condition in modules over semiprimary rings. A ring ''R'' (with 1) is called semiprimar ...
gives necessary and sufficient conditions for a
Noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noether ...
to be an
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are na ...
* Morita theory consists of theorems determining when two rings have "equivalent" module categories * Cartan–Brauer–Hua theorem gives insight on the structure of
division ring In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element us ...
s *
Wedderburn's little theorem In mathematics, Wedderburn's little theorem states that every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields. The Artin–Zorn theorem generalizes the theorem to altern ...
states that finite domains are
fields Fields may refer to: Music * Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song b ...
Other *The
Skolem–Noether theorem In ring theory, a branch of mathematics, the Skolem–Noether theorem characterizes the automorphisms of simple rings. It is a fundamental result in the theory of central simple algebras. The theorem was first published by Thoralf Skolem in 1927 in ...
characterizes the
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
s of
simple ring In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simple ...
s


Structures and invariants of rings


Dimension of a commutative ring

In this section, ''R'' denotes a commutative ring. The
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally t ...
of ''R'' is the supremum of the lengths ''n'' of all the chains of prime ideals \mathfrak_0 \subsetneq \mathfrak_1 \subsetneq \cdots \subsetneq \mathfrak_n. It turns out that the polynomial ring k _1, \cdots, t_n/math> over a field ''k'' has dimension ''n''. The fundamental theorem of dimension theory states that the following numbers coincide for a noetherian local ring (R, \mathfrak): *The Krull dimension of ''R''. *The minimum number of the generators of the \mathfrak-primary ideals. *The dimension of the graded ring \textstyle \operatorname_(R) = \bigoplus_ \mathfrak^k/ (equivalently, 1 plus the degree of its Hilbert polynomial). A commutative ring ''R'' is said to be
catenary In physics and geometry, a catenary (, ) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field. The catenary curve has a U-like shape, superficia ...
if for every pair of prime ideals \mathfrak \subset \mathfrak', there exists a finite chain of prime ideals \mathfrak = \mathfrak_0 \subsetneq \cdots \subsetneq \mathfrak_n = \mathfrak' that is maximal in the sense that it is impossible to insert an additional prime ideal between two ideals in the chain, and all such maximal chains between \mathfrak and \mathfrak' have the same length. Practically all noetherian rings that appear in applications are catenary. Ratliff proved that a noetherian local integral domain ''R'' is catenary if and only if for every prime ideal \mathfrak, :\operatornameR = \operatorname\mathfrak + \operatornameR/\mathfrak where \operatorname\mathfrak is the
height Height is measure of vertical distance, either vertical extent (how "tall" something or someone is) or vertical position (how "high" a point is). For example, "The height of that building is 50 m" or "The height of an airplane in-flight is abou ...
of \mathfrak. If ''R'' is an integral domain that is a finitely generated ''k''-algebra, then its dimension is the
transcendence degree In abstract algebra, the transcendence degree of a field extension ''L'' / ''K'' is a certain rather coarse measure of the "size" of the extension. Specifically, it is defined as the largest cardinality of an algebraically independent subset of ...
of its field of fractions over ''k''. If ''S'' is an
integral extension In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a'j'' in ''A'' such that :b^n + a_ b^ + \cdots + a_1 b + a_0 = 0. That is to say, ''b'' i ...
of a commutative ring ''R'', then ''S'' and ''R'' have the same dimension. Closely related concepts are those of depth and
global dimension In ring theory and homological algebra, the global dimension (or global homological dimension; sometimes just called homological dimension) of a ring ''A'' denoted gl dim ''A'', is a non-negative integer or infinity which is a homological invariant ...
. In general, if ''R'' is a noetherian local ring, then the depth of ''R'' is less than or equal to the dimension of ''R''. When the equality holds, ''R'' is called a
Cohen–Macaulay ring In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a fini ...
. A
regular local ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal ide ...
is an example of a Cohen–Macaulay ring. It is a theorem of Serre that ''R'' is a regular local ring if and only if it has finite global dimension and in that case the global dimension is the Krull dimension of ''R''. The significance of this is that a global dimension is a
homological Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor *Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chromo ...
notion.


Morita equivalence

Two rings ''R'', ''S'' are said to be
Morita equivalent In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like ''R'', ''S'' are Morita equivalent (denoted by R\approx S) if their categories of modules ...
if the category of left modules over ''R'' is equivalent to the category of left modules over ''S''. In fact, two commutative rings which are Morita equivalent must be isomorphic, so the notion does not add anything new to the
category Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...
of commutative rings. However, commutative rings can be Morita equivalent to noncommutative rings, so Morita equivalence is coarser than isomorphism. Morita equivalence is especially important in algebraic topology and functional analysis.


Finitely generated projective module over a ring and Picard group

Let ''R'' be a commutative ring and \mathbf(R) the set of isomorphism classes of finitely generated
projective module In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characterizati ...
s over ''R''; let also \mathbf_n(R) subsets consisting of those with constant rank ''n''. (The rank of a module ''M'' is the continuous function \operatornameR \to \mathbb, \, \mathfrak \mapsto \dim M \otimes_R k(\mathfrak).) \mathbf_1(R) is usually denoted by Pic(''R''). It is an abelian group called the
Picard group In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global ve ...
of ''R''. If ''R'' is an integral domain with the field of fractions ''F'' of ''R'', then there is an exact sequence of groups: :1 \to R^* \to F^* \overset\to \operatorname(R) \to \operatorname(R) \to 1 where \operatorname(R) is the set of
fractional ideal In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral doma ...
s of ''R''. If ''R'' is a regular domain (i.e., regular at any prime ideal), then Pic(R) is precisely the
divisor class group In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumfo ...
of ''R''. For example, if ''R'' is a principal ideal domain, then Pic(''R'') vanishes. In algebraic number theory, ''R'' will be taken to be the
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often deno ...
, which is Dedekind and thus regular. It follows that Pic(''R'') is a finite group ( finiteness of class number) that measures the deviation of the ring of integers from being a PID. One can also consider the group completion of \mathbf(R); this results in a commutative ring K0(R). Note that K0(R) = K0(S) if two commutative rings ''R'', ''S'' are Morita equivalent.


Structure of noncommutative rings

The structure of a
noncommutative ring In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not a ...
is more complicated than that of a commutative ring. For example, there exist
simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by Johnn ...
rings that contain no non-trivial proper (two-sided) ideals, yet contain non-trivial proper left or right ideals. Various invariants exist for commutative rings, whereas invariants of noncommutative rings are difficult to find. As an example, the
nilradical of a ring In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements: :\mathfrak_R = \lbrace f \in R \mid f^m=0 \text m\in\mathbb_\rbrace. In the non-commutative ring case the same definition does not always work. Th ...
, the set of all nilpotent elements, is not necessarily an ideal unless the ring is commutative. Specifically, the set of all nilpotent elements in the ring of all matrices over a division ring never forms an ideal, irrespective of the division ring chosen. There are, however, analogues of the nilradical defined for noncommutative rings, that coincide with the nilradical when commutativity is assumed. The concept of the
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yie ...
of a ring; that is, the intersection of all right (left) annihilators of
simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by Johnn ...
right (left) modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right (left) ideals in the ring, shows how the internal structure of the ring is reflected by its modules. It is also a fact that the intersection of all maximal right ideals in a ring is the same as the intersection of all maximal left ideals in the ring, in the context of all rings; irrespective of whether the ring is commutative. Noncommutative rings are an active area of research due to their ubiquity in mathematics. For instance, the ring of ''n''-by-''n'' matrices over a field is noncommutative despite its natural occurrence in
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
,
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
and many parts of mathematics. More generally,
endomorphism ring In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in a p ...
s of abelian groups are rarely commutative, the simplest example being the endomorphism ring of the
Klein four-group In mathematics, the Klein four-group is a Group (mathematics), group with four elements, in which each element is Involution (mathematics), self-inverse (composing it with itself produces the identity) and in which composing any two of the three ...
. One of the best-known strictly noncommutative ring is the
quaternions In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
.


Applications


The ring of integers of a number field


The coordinate ring of an algebraic variety

If ''X'' is an
affine algebraic variety Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine comb ...
, then the set of all regular functions on ''X'' forms a ring called the
coordinate ring In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime idea ...
of ''X''. For a
projective variety In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables w ...
, there is an analogous ring called the
homogeneous coordinate ring In algebraic geometry, the homogeneous coordinate ring ''R'' of an algebraic variety ''V'' given as a subvariety of projective space of a given dimension ''N'' is by definition the quotient ring :''R'' = ''K'' 'X''0, ''X''1, ''X''2, ..., ''X'N' ...
. Those rings are essentially the same things as varieties: they correspond in essentially a unique way. This may be seen via either
Hilbert's Nullstellensatz In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros," or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic ...
or scheme-theoretic constructions (i.e., Spec and Proj).


Ring of invariants

A basic (and perhaps the most fundamental) question in the classical
invariant theory Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...
is to find and study polynomials in the polynomial ring k /math> that are invariant under the action of a finite group (or more generally reductive) ''G'' on ''V''. The main example is the ring of symmetric polynomials:
symmetric polynomial In mathematics, a symmetric polynomial is a polynomial in variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, is a ''symmetric polynomial'' if for any permutation of the subscripts one has ...
s are polynomials that are invariant under permutation of variable. The
fundamental theorem of symmetric polynomials In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary sy ...
states that this ring is R sigma_1, \ldots, \sigma_n/math> where \sigma_i are elementary symmetric polynomials.


History

Commutative ring theory originated in algebraic number theory, algebraic geometry, and
invariant theory Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...
. Central to the development of these subjects were the rings of integers in algebraic number fields and algebraic function fields, and the rings of polynomials in two or more variables. Noncommutative ring theory began with attempts to extend the complex numbers to various
hypercomplex number In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group represent ...
systems. The genesis of the theories of commutative and noncommutative rings dates back to the early 19th century, while their maturity was achieved only in the third decade of the 20th century. More precisely,
William Rowan Hamilton Sir William Rowan Hamilton Doctor of Law, LL.D, Doctor of Civil Law, DCL, Royal Irish Academy, MRIA, Royal Astronomical Society#Fellow, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the ...
put forth the
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s and
biquaternion In abstract algebra, the biquaternions are the numbers , where , and are complex numbers, or variants thereof, and the elements of multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions co ...
s;
James Cockle Sir James Cockle FRS FRAS FCPS (14 January 1819 – 27 January 1895) was an English lawyer and mathematician. Cockle was born on 14 January 1819. He was the second son of James Cockle, a surgeon, of Great Oakley, Essex. Educated at Charte ...
presented
tessarine In abstract algebra, a bicomplex number is a pair of complex numbers constructed by the Cayley–Dickson process that defines the bicomplex conjugate (w,z)^* = (w, -z), and the product of two bicomplex numbers as :(u,v)(w,z) = (u w - v z, u z ...
s and
coquaternion In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers. After introduction in ...
s; and
William Kingdon Clifford William Kingdon Clifford (4 May 18453 March 1879) was an English mathematician and philosopher. Building on the work of Hermann Grassmann, he introduced what is now termed geometric algebra, a special case of the Clifford algebra named in his ...
was an enthusiast of
split-biquaternion In mathematics, a split-biquaternion is a hypercomplex number of the form :q = w + xi + yj + zk where ''w'', ''x'', ''y'', and ''z'' are split-complex numbers and i, j, and k multiply as in the quaternion group. Since each coefficient ''w'', ''x' ...
s, which he called ''algebraic motors''. These noncommutative algebras, and the non-associative
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
s, were studied within
universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, ...
before the subject was divided into particular
mathematical structure In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional ...
types. One sign of re-organization was the use of direct sums to describe algebraic structure. The various hypercomplex numbers were identified with
matrix ring In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication . The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'')Lang, ''U ...
s by
Joseph Wedderburn Joseph Henry Maclagan Wedderburn FRSE FRS (2 February 1882 – 9 October 1948) was a Scottish mathematician, who taught at Princeton University for most of his career. A significant algebraist, he proved that a finite division algebra is a fie ...
(1908) and
Emil Artin Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing lar ...
(1928). Wedderburn's structure theorems were formulated for finite-dimensional
algebras over a field In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition a ...
while Artin generalized them to
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are na ...
s. In 1920,
Emmy Noether Amalie Emmy NoetherEmmy is the ''Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noethe ...
, in collaboration with W. Schmeidler, published a paper about the theory of ideals in which they defined left and right ideals in a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
. The following year she published a landmark paper called ''Idealtheorie in Ringbereichen'', analyzing
ascending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These con ...
s with regard to (mathematical) ideals. Noted algebraist
Irving Kaplansky Irving Kaplansky (March 22, 1917 – June 25, 2006) was a mathematician, college professor, author, and amateur musician.O'Connor, John J.; Robertson, Edmund F., "Irving Kaplansky", MacTutor History of Mathematics archive, University of St Andr ...
called this work "revolutionary"; the publication gave rise to the term "
Noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noether ...
", and several other mathematical objects being called ''
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite lengt ...
''., p. 44–45.


Notes


References

* * * * * * * * * * * * * *. Vol. II, Pure and Applied Mathematics 128, . * {{DEFAULTSORT:Ring Theory ka:რგოლი (მათემატიკა) ro:Inel (algebră)